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Abstract. The statistical properties of the local optima (metastable states) of the infinite-range
Ising spin glass withp-spin interactions in the presence of an external magnetic fietde
investigated analytically. The average number of optima as well as the typical overlap between
pairs of identical optima are calculated for genepal Similarly to the thermodynamic order
parameter, forp > 2 and smalli, the typical overlapy, is a discontinuous function of the
energy. The size of the jump i increases withp and decreases with, vanishing at finite
values of the magnetic field.

1. Introduction

The viewpoint that the topology of the fitness landscape together with natural selection are
the only sources of organization and order which lie available to evolution has provoked
considerable interest in the study of the statistical properties of fithess landscapes [1]. The
central issue is the limitation imposed by the structure of the fithness landscapes on adaptive
evolution, viewed as a local hill-climbing procedure via fitter mutants. (See [2] for a lucid
criticism of these ideas.) For the sake of concreteness, let us consider a population of
asexually reproducing haploid organisms whose genotypes are described by sequences of
N lsing spinss = (s1,...,sy) With s; = 1. In the discrete space of thé' Dossible
sequences, evolution is modelled by an adaptive walk defined as a connected walk through
a succession of neighbouring sequences (i.e. sequences that differ by a single spin only)
each of which possessing improved fitness [1]. There are several questions of interest whose
answers may shed light on the structure of the landscapes as, for instance, the number of
fithess optima in the sequence space and the similarity between these optima.

Most of the analyses have concentrated on the NK model of random epistatic interactions
since it possesses a tunable control paramiténat regulates the ruggedness of the fitness
landscape [1, 3,4]. In this model, the fitness of the sequeniseobtained by adding up
the fitness contribution of each spin which depends on; as well as on 0K K < N
randomly chosen spins, called neighbours. The fithess & a random function of the
string formed bys; and its K neighbours [1]. An alternative (and more appealing to the
physicists) class of fithess functions was proposed by Amitedrad [5], namely, the Ising
spin glass withp-spin interactions defined by the random energy function [6, 7]

Hy(s) = — Z Jisig...iySiySiy -+ - Si, — h Zsi 1)

1<ir<ig...<ip <N
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where the coupling strengths are statistically independent random variables with a Gaussian
distribution

P(Jigiy..i,) =

-1 Jiziz..i))PNP
NP exp|:—( vig.oip) i| @

p! p!

and# is the external magnetic field. In this context the fitness value ascribed to a sequence
or genotypes is minus the energy. Thus the fitness maxima correspond to the energy
minima of (1). Henceforth we will refer to the fithess maxima or energy minima as simply
optima. Forp = 1 or h — oo the energy (1) gives a single-peaked, smooth correlated
landscape, while the limip — oo corresponds to the random energy model of Derrida [6]
and yields an extremely rugged, uncorrelated landscape. Thepcaseis the well known
SK model [8], which exhibits a large number of highly correlated local optima [9, 10].

For generalp, little is known about the statistical features of the landscape generated
by the energy function (1). A result worth mentioning is that, foe= 0, the correlation
between values df{, for different configurations is given by [5,11]

(H,(sYH,(8)) = [q(s*, s")]” (3)

where
a b 1 X a b 4
q(s,s)—N;s,-s,- @)

is the overlap between the two arbitrary stasésand s”. Here the average indicated by
(...) is taken over the probability distribution of the couplings (2). Thus, as mentioned
before, the correlations between energy levels vanistpfer co.

The thermodynamics of thg-spin Ising model has been investigated within the replica
framework [7,12,13]. In particular, fop = 2 the order parameter functiap(x) tends
to zero continuously as the temperature approaches a critical value at which the transition
between the spin glass and the high temperature (disordered) phases takes place [9, 10]. For
p — oo, the system has a critical temperat@eat which it freezes completely into the
ground stateg (x) is a step function with values 0 and 1, and with a break pointat7 /T,
[7]. The situation for finitep > 2 is considerably more complicated. There is a transition
from the disordered phase to a partially frozen phase characterized by a step fytiedion
with values 0 andj; < 1. As the temperature is lowered further, a second transition occurs,
leading to a phase described by a continuous order parameter function [12,13]. Also of
interest is the sphericagb-spin interaction spin-glass model whose static properties have
been thoroughly investigated using the replica method [14]. (See [15] for an analysis of the
relaxational dynamics.) In particular, the spin-glass phase of this continuous spin model is
described by a step order parameter function, i.e. the one-step replica symmetry breaking
is the most general solution within the Parisi scheme [14].

The aim of this paper is to investigate the statistical properties of the fixed points (local
or global optima) of adaptive walks on the fitness landscape defined by equation (1). The
energy cost of flipping the spin is §H, = 2A; where

A = Z Ji,-z___i],s;siz - S, + hs; (5)

ip<--<ip

is called the stability of;. Since in an adaptive walk only flippings or moves that decrease
the energy (i.e. increase the fithess) are allowed, any stttat satisfies

A >0 Vi (6)
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is an optima of the fitness landscape. Clearly, counting the number of states that obey (6)
is equivalent to calculating the number of solutions of the zero-temperature limit of the
celebrated TAP equations [16]. For non-zero temperature, the quite involved calculation
of the average number of solutions of the TAP equations has been carried qut=fd?

[17] as well as for genergh [18]. However, systematic analyses of the typical energy of
the local optima and of the effects of the external magnetic field have been undertaken for
the simplest case only, namely,= 2 at zero temperature [19-21]. We note that in the
statistical mechanics context the local optima are usually called metastable states.

In this paper we study at length the effects of the magnetic fiedd the structure of the
local optima of thep-spin energy landscape. More pointedly, we calculate analytically the
average number of local optima with a fixed energy densitjenoted by (¢)). Although
this analysis is quite straightforward, it is justified since the dependence of that quantity on
€ andh has not been investigated for genepal In fact, we note that results of extensive
numerical simulations aimed at measurigg(¢)) have been reported recently [22]. More
importantly, we calculate the average number of pairs of local optima with overkaud
fixed energy density. This quantity, denoted byM(q, ¢)), allows us to determine the
typical overlapg, between pairs of local optima with energy densgitySince(M (g, €)) is
directly related to the second moment/gi¢), we can determine the regions in the space
of parametergp, ¢, h) where this random variable is self-averaging.

The remainder of the paper is organized as follows. In section 2 we derive the formal
equation for thenth moment of the random variabl& (¢). Then we use that result to
calculate the average number of local optitM(e)) in section 3, and the average number
of pairs of local optima(M (g, ¢)) in section 4. Finally, some concluding remarks are
presented in section 5.

2. The formalism

The number of local optimaV(e) with fixed energy densit can be calculated by
introducing the quantityy defined by

1 if eN =H,(s) andA; > 0Vi
0 otherwise
so that
N(é) = Trs Y, (8)

where T, denotes the summation over th¥ gtates of the system. We are interested in the
evaluation of the momen{A\/ (¢)]") for n = 1, 2, which can be written as

(IN@©]") = <1‘[Trsa Ys«>
a=1

=Tra..TraWTa=1...,Ya =1 9)
where WY = 1,...,Ys = 1) is the joint probability that the: random variables
Yq, ..., Y assume the value 1. Using the definition

W¥a=1...Ye=1= <]‘[3[e —Hy(s)/NI] | @(A;‘)> (10)
a=1 i

the equation for theth moment becomes

@) = ([T slen ~ 1 [T 0ca) (1)
a=1 i
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where®(x) = 1if x > 0 and 0 otherwise. We have presented the derivation of equation (11)
in detail because some authors have written the random vamadgin terms of the delta
function directly [20, 21]. Clearly, this procedure is correct only for the moments @f)
as shown above.

In the next two sections we concentrate on the explicit evaluation of equation (11) for
n =1 and 2. To facilitate those calculations, we express the ergy) in terms of the
stabilities A;,

1
H,y(s) = - Z(Ai +h(p — Dsi) (12)

so that the dependence on the couplings in equation (11) appears only through the stabilities
A;.

3. Average number of optima

Using the integral representation of the delta function and the auxiliary relation (12) we can
write the first moment of\/(¢) as

> de o  dA;dA; L
N(e)) = /m o exp(zNte?[/oo o O(8) exp(iA; Ay

x Trg exp[ —ih Z Ajsi + %% Z(Ai +h(p— 1)Si):|

<exp<—zZA D JiipiSiSi s>> (13)

ip<-<ip

The average over the couplings can be easily carried out using the identity

Z A Z Jllz l],sl Siy - si,, = Z (i Au) Jil...ipsil s sip (14)
k=1

ip<-<ip i1<--<ip

and yields, in the limitv=— oo,

(...)=EXD|: 4Np1 Z <i >:|

ip<--<ip, Nk=1

:exp[_ilz(&)z_”“”l)(ZA)} (15)

The remaining calculations are straightforward: a Gaussian transformation allows us to
decouple the sites in (15), so that the integrals aveand A; as well as the trace over the
spins can be readily performed. As usual, we conclude the calculation by carrying out a
saddle-point integration over two appropriately rescaled saddle-point parameters. The final
result for the exponenf in (N (e)) = Y/ is

€V 1 V2 _ ~ B B
f=—-_—"" <,u2 — v+ ) —In2 +In[e"erfo(—u — h) + e " erfc(—u + )]
Jp p—1 4p
(16)
where

=
I
5=

(17)
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Figure 1. The exponentf in (N (e)) = /N as a function of the energy densityfor p = 2
andh =0,0.5,1.0, and 1.5.

Here the saddle-point parameterand . are obtained by solving the equationg/dv = 0
anddf/ou = 0 simultaneously. In figure 1 we present the expongras a function ok

for p = 2 and several values @f For the sake of clarity we present only positive values of

f. The decrease in the number of local optimakagacreases indicates that the landscape
becomes smoother, as expected. The resuljs ©f2 are qualitatively similar, except that

the peaks are higher and slightly broader. Two values of the energy density are particularly
important, namely, the value at whichi reaches its maximum valug¢, denoted by,

and the lowest value of for which f vanishes, denoted bys. While ¢, gives the typical

value of the energy density of the local optinag,gives a lower bound to the ground-state
energy density of the spin model defined by the Hamiltonian (1) [19]. In figures 2 and 3 we
presents, and f;, respectively, as a function &f for several values op. These quantities

are easily obtained by setting = 0 in equation (16). The single saddle-point equation
df/ou = 0 possesses either one root (for either small or large valué$ of three roots

(for intermediate values of). The discontinuity ine¢, that can be observed in figure 2

for p > 7 is due to the simultaneous disappearance of two of those rootsp Feroco

and finite s we find ¢, — 0, signalling thus the emergence of the so-called complexity
catastrophe, i.e. the energy density of typical local optima equals the expected energy of a
randomly chosen state [1]. We note tHat (¢,)) = exp(f;N) yields the average number

of optima regardless of their energy values, i.e. the same result is obtained by dropping
the energy constraint in the definition &f given in equation (7). In figure 4 we present

€0 as a function ofh for several values op. Clearly, since in the limit: — oo there is

only one optimum, namelys = 1, we findeg — ¢, = —h. It is important to note that

for p — o0, € tends to a non-zero limiting value. This result illustrates the fact that the
complexity catastrophe phenomenon only affects the typical optima. In fact, the increase
of p has little effect on the ground-state lower bousd which for 2 = 0 decreases from
—0.791 for p = 2 [17] to —v/In2 ~ —0.832 for p — oo [6].
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Figure 2. The typical energy density; of the local optima as a function &f for (from top to
bottom) p = 2 to p = 10. Forp — oo we finde, — 0. The broken straight line i = —h.

0.6 ..

0 2 4 6 8
h

Figure 3. The exponentf; in the expression for the average number of optivae,)) = etV
as a function of: for (from bottom to top)p = 2 to p = 10. Forp — oo we find f; — In2.
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Figure 4. The lower bound to the ground-state energy density as a function éér (from
bottom to top)p = 2, 3, 4, andoo. The broken straight line isp = —h.

4. Average number of pairs of optima

We define the number of pairs of optima with overlgp- —1, -1 + % ..., 1 and energy
densitye as

Mg, €)= 5 TraTre Yo 828<Nq,2 ! f) (18)

i

where §(m, n) is the Kronecker delta and; is given by equation (7). Following the
procedure presented in section 2, the averag&fobver the couplings is cast into the form

2
(M(q,€)) = ;<Trsl Try 8<Nq, Zs,.lsf> []oleN —H,(sD1] | @(A;‘)>. (19)
i a=1 i

The integral representations of the delta function and the Kronecker delta allow us to write
this equation as

wig.n =3 [ Lexinan [1[ 5
xl_[TrSu/ w@(A“)exp(zA“A“)
xexp[—ic} Zs,.ls,?—ihZA Z”’(Af’—i—h(p—l)s;’)}
<exp(—zZA“ D Jiipisish )> (20)

ip<--<ip

Ll"’l,l)
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As in the previous section, the average can be performed with the aid of an identity analogous
to (14), yielding

2 P 2
(...>:exp{—mé’[f_l > [Z(Z&g)sg...s;] } (21)
i1<-<ip Fa=1 Nk=1

After some algebra, the argument of this exponential is rewritten in the Nmit oo
as

=gl (0] g
W(ZA? 5 ,2)(ZA,2 7). 22)

The next step is to introduce via delta functions the auxiliary parametéws; = ) _; A},

Nma = 3, A%, Nvy = 3, Alsls?, Nvo = 3, Alsls?, and their respective Lagrange
multipliers in order to decouple the variablgs and A¢ for different sitesi. Then the
integrals overA¢ and A¢, and the trace oves? can be easily performed. As before,
the auxiliary parameters as well as the Lagrange multiplje@nd € are integrated out

via a saddle-point integration. This part of the calculation is straightforward and quite
unilluminating so we do not present any further detail. To proceed further we assume
that the symmetrys! < s between the two replicas remains intact, he. = m, and

v1 = vy. This is quite a sensible assumption since the breaking of the replica symmetry
that pervades the thermodynamic calculations [7, 12, 13] is very probably a consequence of
the limit where the number of replicas goes to zero. In any event we will, conservatively,
restrict the forthcoming analysis to pairs of identical optima only. The final result for the
exponentg in (M(q, €)) = %exp(gN) is written more simply in terms of a new set of
saddle-point parameters that are linear combinations of those introduced above. We find

€V 1 2 2—p 2 » v2
8—\/ﬁ+611—2(p_1)|:(x+)’) +g " Px—y) +A+gq )4Pi|
b A4+ A -] +MEW,x,y,2)—In2 (23)
2(p—-1
where

7 e h =1y 7 e —h p=1
E = e"’H/ Drerfc| -~ 71 T4" T, e‘”"‘Z/ Drerfc| -~ " T4" !
—xh Vi-g#=? x4 J1- g2
00 i -1
. y+h—qgPt
+e/ Drerfc| —=—————
i J1— g2

o0 P -1
. y—h—q"1t
+€ /_y_h Dr erfc |:—1_qu_2} . (24)

Here Ir = dr e*fz/ﬁ is the Gaussian measure ahds given by (17). The saddle-point
parameters, x, y, z must be determined so as to maximgeThis is achieved by solving
the four coupled saddle-point equatidig/ov = 0,9g/dx = 0,9g/dy = 0, anddg/dz = O.
Forg =1 we findy = 0 and henceg = f, as expected. Furthermore, fpr= 0 andh =0
we findx = y andz = 0 so thatg = 2f. Once(M(q, €)) is known, the second moment



Landscape of the-spin model 8453

1.0

Figure 5. The exponentg, in the expression for the average number of pairs of identical
optima (M(e;, q)) = eV as a function ofg for p = 7 and (from top to bottom); =
0,1,2,25,3,3.3,3.6,3.8,4 and 4.2.

of N (¢) can be calculated using the identity

Y Mg, ) = F(N (@)D

q

~ (M1, ©)) (25)

since the sum is dominated by the overlap= ¢, that maximizes equation (23) in the
limit N — oo. Hence we have[N (¢)]%) = exp(f@N) with @ given by (23) calculated
atg = g;. Thus forh = 0 the variance of the random variahM(¢) vanishes in the
thermodynamic limit, provided that. = 0. We note that although = 0 is always a point
of maximum ofg for &~ = 0, that maximum may not be the global one and, in that case,
q: # 0.

For fixed ¢, the dependence ¢f on ¢ is similar to that shown in figure 1. Likewise,
the maximum ofg with respect toc, denoted byg,, is determined by setting = 0. In
figure 5 we show this maximum as a functiongfor p = 7 and several values &f. The
quantity% exp(g;N) can be viewed as the number of pairs of identical optima (in the sense
that their energies and saddle-point parameters are identical) with overtagardless of
the specific value of their energies. Honot too large there appears a minimum for 1,
indicating that around a typical optimum there is a region where other optima are rarer.
The picture that emerges is one of clusters of many optima surrounded by comparatively
smoother valleys. The typical energy of these optima is shown in figure 6 as a function
of the overlapg. The typical overlap;, between the optima increases from Ohat O to
1 in the limit = — oo since, as expected, the external magnetic field induces correlations
between the optima. This is shown in figure 7, where we pregeas a function of: for
several values op. The discontinuity that appears fpr> 7 is caused by the competition
between the two maxima shown in figure 5.
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Figure 6. The typical value of the energy density of a pair of identical optima as a function of
the overlapg for p = 7 and (from bottom to topk =0, 1, 2, 2.5, 3, 3.3,3.6,3.8,4 and 4.2.

/

1.0

08

06

Figure 7. The typical value of the overlap between pair of identical optima as a functiégn of
for (from left to right) p = 2 to p = 8.

Next we consider the dependence of the typical overlap between identical optima on their
energies. This analysis is more involved since, besides the four saddle-point equations, we
also have to solve the equatiép/dg = 0. In figures 8 and 9 we shogy as a function ot
for p = 2 andp = 3, respectively, and several values of the external magnetic field: Eor
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Figure 8. The typical value of the overlap between pair of identical optima as a function of
their energy density fop = 2 andh = 0, 0.5, 1.0, and 1.5. The marked points correspond to
f@=o.
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04
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Figure 9. Same as in figure 8 but fgp = 3, andh = 0, 0.27, 0.5, 1.0, and 1.5.

0, in both cases we fing, = 0 up to a certain value of the energy dengity= —0.672 for

p = 2 ande = —0.792 for p = 3). Thus, as mentioned befo¥,(¢) is self-averaging in this
regime. Our results fop = 2 are remarkably similar to those found in the replica calculation
of the quenched averagl A/ (¢)), with the typical overlap; replaced by the saddle-point
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Figure 10. The exponentg in the expression for the average number of pairs of identical
optima (M(e, ¢)) = eV as a function ofg for p = 3, h = 0, and (from top to bottom)
€ = —0.73, -0.75, —0.77, —0.79, and—0.81.

parametefj = ((s;)) [20]. Here(...). means an average over optima with energy denrsity

In particular,§ vanishes foe > —0.672, indicating thus that/(¢) is self-averaging in this
regime, in agreement with our results. However, whilejot 2, ¢, increases continuously
from zero, forp = 3 there is a discontinuity at = —0.792. The same phenomenon is
observed forp > 3, with the size of the jump iy, increasing withp. This finding is
reminiscent of the jump in the order parameter found in the thermodynamic calculations for
p > 2 [12,13]. This discontinuity inj, can be understood by studying the dependence of
the exponeng on the overlag; for p = 3 andh = 0, shown in figure 10. Since the typical
overlap is associated to the global maximungpthe competition between the maximum at

g = 0 and the maximum at > 0 originates the jump ig,, which takes place at the energy
density where the two maxima have precisely the same height. The situation for non-zero
h is more complicated. The correlations induced by the magnetic field destroy the region
of self-averageness df (¢). Interestingly, for a giverk > 0 there is a value of the energy
density for which the typical overlap is minimal. Fpr= 3 the effect of the magnetic field

is to decrease the size of the jumpdgnuntil it disappears altogether fér ~ 0.29. The
results forp > 3 are qualitatively similar to those for = 3. We mention only that the larger

p is, the larger the value ofe at which the discontinuity occurs, and the larger the value
of 4 at which it disappears. Unfortunately, the enormous difficulty of solving the system
of five coupled equations prevents a more systematic analysis of these discontinuities.

5. Conclusion

The analytical investigation of the statistical structure of the energy landscape @f the
spin Ising model presented in this paper is of interest from the viewpoint of the traditional
statistical mechanics of disordered systems [7,19-21] as well as from the perspective of
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the study of adaptive walks in rugged fithess landscapes [5, 11, 22]. Besides extending the
calculation of the average number of optima to generaind non-zero magnetic field, we
have focused on the characterization of the typical oveglapetween pairs of identical
optima. Interestingly, the dependencegpfon the energy density is reminiscent of the
dependence of the thermodynamic order parameter on the tempefafi@el3]. We must

note, however, that there is no relation betw&eande since InN (¢) is not the entropy of

the spin system. The quite complex effect of the magnetic field on the statistical properties
of the energy optima motivates a more detailed study of the thermodynamics pfspia

Ising model for non-zerd:. In fact, even the unambitious analysis of the first moment
(N (e)) has unveiled an interesting interplay betwéeand p that leads to a discontinuity

in the typical energy density of the optima. Moreover, we have found that the magnetic
field decreases the size of the jump in the typical oveglahat occurs forp > 2. It would

be interesting to investigate whether a similar effect occurs for the thermodynamic order
parameter as well, which might lead, eventually, to a continuous phase transition. We note
that this effect has already been observed in the sphesispin interaction model [14].

To conclude, we must mention that the calculations presented in this paper are free of
all the mathematical subtleties that permeate the replica analyses of the infinite-range Ising
spin glass [9,10]. Thus our results present a reliable account, in the sense that we do not
resort to the replica method, of the statistical properties of gkspin energy landscape.
Although these results may have little relevance to the thermodynamics of the model, they
are of considerable interest to the characterization of the fixed points (metastable states) of
adaptive walks (zero-temperature Monte Carlo dynamics) on that landscape.
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