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Abstract. The statistical properties of the local optima (metastable states) of the infinite-range
Ising spin glass withp-spin interactions in the presence of an external magnetic fieldh are
investigated analytically. The average number of optima as well as the typical overlap between
pairs of identical optima are calculated for generalp. Similarly to the thermodynamic order
parameter, forp > 2 and smallh, the typical overlapqt is a discontinuous function of the
energy. The size of the jump inqt increases withp and decreases withh, vanishing at finite
values of the magnetic field.

1. Introduction

The viewpoint that the topology of the fitness landscape together with natural selection are
the only sources of organization and order which lie available to evolution has provoked
considerable interest in the study of the statistical properties of fitness landscapes [1]. The
central issue is the limitation imposed by the structure of the fitness landscapes on adaptive
evolution, viewed as a local hill-climbing procedure via fitter mutants. (See [2] for a lucid
criticism of these ideas.) For the sake of concreteness, let us consider a population of
asexually reproducing haploid organisms whose genotypes are described by sequences of
N Ising spinss = (s1, . . . , sN) with si = ±1. In the discrete space of the 2N possible
sequences, evolution is modelled by an adaptive walk defined as a connected walk through
a succession of neighbouring sequences (i.e. sequences that differ by a single spin only)
each of which possessing improved fitness [1]. There are several questions of interest whose
answers may shed light on the structure of the landscapes as, for instance, the number of
fitness optima in the sequence space and the similarity between these optima.

Most of the analyses have concentrated on the NK model of random epistatic interactions
since it possesses a tunable control parameterK that regulates the ruggedness of the fitness
landscape [1, 3, 4]. In this model, the fitness of the sequences is obtained by adding up
the fitness contribution of each spinsi , which depends onsi as well as on 06 K < N

randomly chosen spins, called neighbours. The fitness ofsi is a random function of the
string formed bysi and itsK neighbours [1]. An alternative (and more appealing to the
physicists) class of fitness functions was proposed by Amitranoet al [5], namely, the Ising
spin glass withp-spin interactions defined by the random energy function [6, 7]

Hp(s) = −
∑

16i1<i2...<ip6N
Ji1i2...ip si1si2 . . . sip − h

∑
i

si (1)
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where the coupling strengths are statistically independent random variables with a Gaussian
distribution

P(Ji1i2...ip ) =
√
Np−1

πp!
exp

[
− (Ji1i2...ip )

2Np−1

p!

]
(2)

andh is the external magnetic field. In this context the fitness value ascribed to a sequence
or genotypes is minus the energy. Thus the fitness maxima correspond to the energy
minima of (1). Henceforth we will refer to the fitness maxima or energy minima as simply
optima. Forp = 1 or h → ∞ the energy (1) gives a single-peaked, smooth correlated
landscape, while the limitp→∞ corresponds to the random energy model of Derrida [6]
and yields an extremely rugged, uncorrelated landscape. The casep = 2 is the well known
SK model [8], which exhibits a large number of highly correlated local optima [9, 10].

For generalp, little is known about the statistical features of the landscape generated
by the energy function (1). A result worth mentioning is that, forh = 0, the correlation
between values ofHp for different configurations is given by [5, 11]

〈Hp(sa)Hp(sb)〉 = [q(sa, sb)]p (3)

where

q(sa, sb) = 1

N

N∑
i=1

sai s
b
i (4)

is the overlap between the two arbitrary statessa and sb. Here the average indicated by
〈. . .〉 is taken over the probability distribution of the couplings (2). Thus, as mentioned
before, the correlations between energy levels vanish forp→∞.

The thermodynamics of thep-spin Ising model has been investigated within the replica
framework [7, 12, 13]. In particular, forp = 2 the order parameter functionq(x) tends
to zero continuously as the temperature approaches a critical value at which the transition
between the spin glass and the high temperature (disordered) phases takes place [9, 10]. For
p → ∞, the system has a critical temperatureTc at which it freezes completely into the
ground state:q(x) is a step function with values 0 and 1, and with a break point atx = T/Tc
[7]. The situation for finitep > 2 is considerably more complicated. There is a transition
from the disordered phase to a partially frozen phase characterized by a step functionq(x)

with values 0 andq1 < 1. As the temperature is lowered further, a second transition occurs,
leading to a phase described by a continuous order parameter function [12, 13]. Also of
interest is the sphericalp-spin interaction spin-glass model whose static properties have
been thoroughly investigated using the replica method [14]. (See [15] for an analysis of the
relaxational dynamics.) In particular, the spin-glass phase of this continuous spin model is
described by a step order parameter function, i.e. the one-step replica symmetry breaking
is the most general solution within the Parisi scheme [14].

The aim of this paper is to investigate the statistical properties of the fixed points (local
or global optima) of adaptive walks on the fitness landscape defined by equation (1). The
energy cost of flipping the spinsi is δHp = 21i where

1i =
∑

i2<···<ip
Jii2...ip sisi2 . . . sip + hsi (5)

is called the stability ofsi . Since in an adaptive walk only flippings or moves that decrease
the energy (i.e. increase the fitness) are allowed, any states that satisfies

1i > 0 ∀i (6)
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is an optima of the fitness landscape. Clearly, counting the number of states that obey (6)
is equivalent to calculating the number of solutions of the zero-temperature limit of the
celebrated TAP equations [16]. For non-zero temperature, the quite involved calculation
of the average number of solutions of the TAP equations has been carried out forp = 2
[17] as well as for generalp [18]. However, systematic analyses of the typical energy of
the local optima and of the effects of the external magnetic field have been undertaken for
the simplest case only, namely,p = 2 at zero temperature [19–21]. We note that in the
statistical mechanics context the local optima are usually called metastable states.

In this paper we study at length the effects of the magnetic fieldh on the structure of the
local optima of thep-spin energy landscape. More pointedly, we calculate analytically the
average number of local optima with a fixed energy densityε, denoted by〈N (ε)〉. Although
this analysis is quite straightforward, it is justified since the dependence of that quantity on
ε andh has not been investigated for generalp. In fact, we note that results of extensive
numerical simulations aimed at measuring〈N (ε)〉 have been reported recently [22]. More
importantly, we calculate the average number of pairs of local optima with overlapq and
fixed energy densityε. This quantity, denoted by〈M(q, ε)〉, allows us to determine the
typical overlapqt between pairs of local optima with energy densityε. Since〈M(qt , ε)〉 is
directly related to the second moment ofN (ε), we can determine the regions in the space
of parameters(p, ε, h) where this random variable is self-averaging.

The remainder of the paper is organized as follows. In section 2 we derive the formal
equation for thenth moment of the random variableN (ε). Then we use that result to
calculate the average number of local optima〈N (ε)〉 in section 3, and the average number
of pairs of local optima〈M(q, ε)〉 in section 4. Finally, some concluding remarks are
presented in section 5.

2. The formalism

The number of local optimaN (ε) with fixed energy densityε can be calculated by
introducing the quantityYs defined by

Ys =
{

1 if εN = Hp(s) and1i > 0 ∀i
0 otherwise

(7)

so that

N (ε) = Trs Ys (8)

where Trs denotes the summation over the 2N states of the system. We are interested in the
evaluation of the moment〈[N (ε)]n〉 for n = 1, 2, which can be written as

〈[N (ε)]n〉 =
〈 n∏
a=1

Trsa Ysa
〉

= Trs1 . . .TrsnW(Ys1 = 1, . . . , Ysn = 1) (9)

whereW(Ys1 = 1, . . . , Ysn = 1) is the joint probability that then random variables
Ys1, . . . , Ysn assume the value 1. Using the definition

W(Ys1 = 1, . . . , Ysn = 1) =
〈 n∏
a=1

δ[ε −Hp(sa)/N ]
∏
i

2(1a
i )

〉
(10)

the equation for thenth moment becomes

〈[N (ε)]n〉 =
〈 n∏
a=1

Trsa δ[εN −Hp(sa)]
∏
i

2(1a
i )

〉
(11)
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where2(x) = 1 if x > 0 and 0 otherwise. We have presented the derivation of equation (11)
in detail because some authors have written the random variableN (ε) in terms of the delta
function directly [20, 21]. Clearly, this procedure is correct only for the moments ofN (ε)
as shown above.

In the next two sections we concentrate on the explicit evaluation of equation (11) for
n = 1 and 2. To facilitate those calculations, we express the energyHp(s) in terms of the
stabilities1i ,

Hp(s) = − 1

p

∑
i

(1i + h(p − 1)si) (12)

so that the dependence on the couplings in equation (11) appears only through the stabilities
1i .

3. Average number of optima

Using the integral representation of the delta function and the auxiliary relation (12) we can
write the first moment ofN (ε) as

〈N (ε)〉 =
∫ ∞
−∞

dε̃

2π
exp(iNεε̃)

∏
i

∫ ∞
−∞

d1id1̃i

2π
2(1i) exp(i1i1̃i)

×Trs exp

[
− ih

∑
i

1̃isi + i

p
ε̃
∑
i

(1i + h(p − 1)si)

]
×
〈

exp

(
− i

∑
i

1̃i

∑
i2<···<ip

Jii2...ip sisi2...Sip

)〉
. (13)

The average over the couplings can be easily carried out using the identity∑
i

1̃i

∑
i2<···<ip

Jii2...ip sisi2 . . . sip =
∑

i1<···<ip

( p∑
k=1

1̃ik

)
Ji1...ip si1 . . . sip (14)

and yields, in the limitN →∞,

〈. . .〉 = exp

[
− p!

4Np−1

∑
i1<···<ip

( p∑
k=1

1̃ik

)2]

= exp

[
− p

4

∑
i

(1̃i)
2− p(p − 1)

4N

(∑
i

1̃i

)2]
. (15)

The remaining calculations are straightforward: a Gaussian transformation allows us to
decouple the sites in (15), so that the integrals over1i and1̃i as well as the trace over the
spins can be readily performed. As usual, we conclude the calculation by carrying out a
saddle-point integration over two appropriately rescaled saddle-point parameters. The final
result for the exponentf in 〈N (ε)〉 = eNf is

f = εν√
p
− 1

p − 1

(
µ2− µν + ν2

4p

)
− ln 2+ ln[eh̄νerfc(−µ− h̄)+ e−h̄νerfc(−µ+ h̄)]

(16)

where

h̄ = h√
p
. (17)
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Figure 1. The exponentf in 〈N (ε)〉 = efN as a function of the energy densityε for p = 2
andh = 0, 0.5, 1.0, and 1.5.

Here the saddle-point parametersν andµ are obtained by solving the equations∂f/∂ν = 0
and∂f/∂µ = 0 simultaneously. In figure 1 we present the exponentf as a function ofε
for p = 2 and several values ofh. For the sake of clarity we present only positive values of
f . The decrease in the number of local optima ash increases indicates that the landscape
becomes smoother, as expected. The results ofp > 2 are qualitatively similar, except that
the peaks are higher and slightly broader. Two values of the energy density are particularly
important, namely, the value at whichf reaches its maximum valueft , denoted byεt ,
and the lowest value ofε for which f vanishes, denoted byε0. While εt gives the typical
value of the energy density of the local optima,ε0 gives a lower bound to the ground-state
energy density of the spin model defined by the Hamiltonian (1) [19]. In figures 2 and 3 we
presentεt andft , respectively, as a function ofh for several values ofp. These quantities
are easily obtained by settingν = 0 in equation (16). The single saddle-point equation
∂f/∂µ = 0 possesses either one root (for either small or large values ofh) or three roots
(for intermediate values ofh). The discontinuity inεt that can be observed in figure 2
for p > 7 is due to the simultaneous disappearance of two of those roots. Forp → ∞
and finiteh we find εt → 0, signalling thus the emergence of the so-called complexity
catastrophe, i.e. the energy density of typical local optima equals the expected energy of a
randomly chosen state [1]. We note that〈N (εt )〉 = exp(ftN) yields the average number
of optima regardless of their energy values, i.e. the same result is obtained by dropping
the energy constraint in the definition ofYs given in equation (7). In figure 4 we present
ε0 as a function ofh for several values ofp. Clearly, since in the limith → ∞ there is
only one optimum, namely,s = 1, we find ε0 → εt = −h. It is important to note that
for p → ∞, ε0 tends to a non-zero limiting value. This result illustrates the fact that the
complexity catastrophe phenomenon only affects the typical optima. In fact, the increase
of p has little effect on the ground-state lower boundε0, which for h = 0 decreases from
−0.791 forp = 2 [17] to−√ln 2≈ −0.832 forp→∞ [6].
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Figure 2. The typical energy densityεt of the local optima as a function ofh for (from top to
bottom)p = 2 to p = 10. Forp→∞ we find εt → 0. The broken straight line isεt = −h.

Figure 3. The exponentft in the expression for the average number of optima〈N (εt )〉 = eftN

as a function ofh for (from bottom to top)p = 2 to p = 10. Forp→∞ we find ft → ln 2.
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Figure 4. The lower boundε0 to the ground-state energy density as a function ofh for (from
bottom to top)p = 2, 3, 4, and∞. The broken straight line isε0 = −h.

4. Average number of pairs of optima

We define the number of pairs of optima with overlapq = −1,−1+ 2
N
, . . . ,1 and energy

densityε as

M(q, ε) = 1
2 Trs1 Trs2 Ys1Ys2δ

(
Nq,

∑
i

s1
i s

2
i

)
(18)

where δ(m, n) is the Kronecker delta andYs is given by equation (7). Following the
procedure presented in section 2, the average ofM over the couplings is cast into the form

〈M(q, ε)〉 = 1
2

〈
Trs1 Trs2 δ

(
Nq,

∑
i

s1
i s

2
i

) 2∏
a=1

δ[εN −Hp(sa)]
∏
i

2(1a
i )

〉
. (19)

The integral representations of the delta function and the Kronecker delta allow us to write
this equation as

〈M(q, ε)〉 = 1
2

∫ π

−π

dq̃

2π
exp(iNqq̃)

∏
a

∫ ∞
−∞

dε̃a

2π
exp(iNεaε̃a)

×
∏
ai

Trsa
∫ ∞
−∞

d1a
i d1̃a

i

2π
2(1a

i ) exp(i1a
i 1̃

a
i )

× exp

[
− iq̃

∑
i

s1
i s

2
i − ih

∑
ai

1̃a
i s
a
i +

i

p

∑
ai

ε̃a(1a
i + h(p − 1)sai )

]
×
〈

exp

(
− i

∑
ai

1̃a
i

∑
i2<···<ip

Jii2...ip s
a
i s
a
i2
. . . saip

)〉
. (20)
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As in the previous section, the average can be performed with the aid of an identity analogous
to (14), yielding

〈. . .〉 = exp

{
− p!

4Np−1

∑
i1<···<ip

[ 2∑
a=1

( p∑
k=1

1̃a
ik

)
sai1 . . . s

a
ip

]2}
. (21)

After some algebra, the argument of this exponential is rewritten in the limitN →∞
as

{. . .} = −p
4

2∑
a=1

[∑
i

(1̃a
i )

2+ p − 1

N

(∑
i

1̃a
i

)2]
− pq

p−1

2

∑
i

1̃1
i 1̃

2
i s

1
i s

2
i

−p(p − 1)qp−2

2N

(∑
i

1̃1
i s

1
i s

2
i

)(∑
i

1̃2
i s

1
i s

2
i

)
. (22)

The next step is to introduce via delta functions the auxiliary parameters:Nm1 =
∑

i 1̃
1
i ,

Nm2 =
∑

i 1̃
2
i , Nv1 =

∑
i 1̃

1
i s

1
i s

2
i , Nv2 =

∑
i 1̃

2
i s

1
i s

2
i , and their respective Lagrange

multipliers in order to decouple the variablessai and 1̃a
i for different sitesi. Then the

integrals over1a
i and 1̃a

i , and the trace oversai can be easily performed. As before,
the auxiliary parameters as well as the Lagrange multipliersq̃ and ε̃ are integrated out
via a saddle-point integration. This part of the calculation is straightforward and quite
unilluminating so we do not present any further detail. To proceed further we assume
that the symmetrys1 ↔ s2 between the two replicas remains intact, i.e.m1 = m2 and
v1 = v2. This is quite a sensible assumption since the breaking of the replica symmetry
that pervades the thermodynamic calculations [7, 12, 13] is very probably a consequence of
the limit where the number of replicas goes to zero. In any event we will, conservatively,
restrict the forthcoming analysis to pairs of identical optima only. The final result for the
exponentg in 〈M(q, ε)〉 = 1

2 exp(gN) is written more simply in terms of a new set of
saddle-point parameters that are linear combinations of those introduced above. We find

g = εν√
p
+ qz − 1

2(p − 1)

[
(x + y)2+ q2−p(x − y)2+ (1+ qp) ν

2

4p

]
+ ν

2(p − 1)
[(1+ q)x + (1− q)y] + ln4(ν, x, y, z)− ln 2 (23)

where

4 = eνh̄−z
∫ ∞
−x−h̄

Dt erfc

[
−x + h̄+ q

p−1t√
1− q2p−2

]
+ e−νh̄−z

∫ ∞
−x+h̄

Dt erfc

[
−x − h̄+ q

p−1t√
1− q2p−2

]

+ez
∫ ∞
−y+h̄

Dt erfc

[
−y + h̄− q

p−1t√
1− q2p−2

]

+ez
∫ ∞
−y−h̄

Dt erfc

[
−y − h̄− q

p−1t√
1− q2p−2

]
. (24)

Here Dt = dt e−t
2
/
√
π is the Gaussian measure andh̄ is given by (17). The saddle-point

parametersν, x, y, z must be determined so as to maximizeg. This is achieved by solving
the four coupled saddle-point equations∂g/∂ν = 0, ∂g/∂x = 0, ∂g/∂y = 0, and∂g/∂z = 0.
For q = 1 we findy = 0 and henceg = f , as expected. Furthermore, forq = 0 andh = 0
we find x = y andz = 0 so thatg = 2f . Once〈M(q, ε)〉 is known, the second moment
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Figure 5. The exponentgt in the expression for the average number of pairs of identical
optima 〈M(εt , q)〉 = egtN as a function ofq for p = 7 and (from top to bottom)h =
0, 1, 2, 2.5, 3, 3.3, 3.6, 3.8, 4 and 4.2.

of N (ε) can be calculated using the identity∑
q

〈M(q, ε)〉 = 1
2〈[N (ε)]2〉

≈ 〈M(qt , ε)〉 (25)

since the sum is dominated by the overlapq = qt that maximizes equation (23) in the
limit N →∞. Hence we have〈[N (ε)]2〉 = exp(f (2)N) with f (2) given by (23) calculated
at q = qt . Thus for h = 0 the variance of the random variableN (ε) vanishes in the
thermodynamic limit, provided thatqt = 0. We note that althoughq = 0 is always a point
of maximum ofg for h = 0, that maximum may not be the global one and, in that case,
qt 6= 0.

For fixedq, the dependence ofg on ε is similar to that shown in figure 1. Likewise,
the maximum ofg with respect toε, denoted bygt , is determined by settingν = 0. In
figure 5 we show this maximum as a function ofq for p = 7 and several values ofh. The
quantity 1

2 exp(gtN) can be viewed as the number of pairs of identical optima (in the sense
that their energies and saddle-point parameters are identical) with overlapq, regardless of
the specific value of their energies. Forh not too large there appears a minimum forq ≈ 1,
indicating that around a typical optimum there is a region where other optima are rarer.
The picture that emerges is one of clusters of many optima surrounded by comparatively
smoother valleys. The typical energyεt of these optima is shown in figure 6 as a function
of the overlapq. The typical overlapqt between the optima increases from 0 ath = 0 to
1 in the limit h → ∞ since, as expected, the external magnetic field induces correlations
between the optima. This is shown in figure 7, where we presentqt as a function ofh for
several values ofp. The discontinuity that appears forp > 7 is caused by the competition
between the two maxima shown in figure 5.
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Figure 6. The typical value of the energy density of a pair of identical optima as a function of
the overlapq for p = 7 and (from bottom to top)h = 0, 1, 2, 2.5, 3, 3.3, 3.6, 3.8, 4 and 4.2.

Figure 7. The typical value of the overlap between pair of identical optima as a function ofh

for (from left to right)p = 2 to p = 8.

Next we consider the dependence of the typical overlap between identical optima on their
energies. This analysis is more involved since, besides the four saddle-point equations, we
also have to solve the equation∂g/∂q = 0. In figures 8 and 9 we showqt as a function ofε
for p = 2 andp = 3, respectively, and several values of the external magnetic field. Forh =
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Figure 8. The typical value of the overlap between pair of identical optima as a function of
their energy density forp = 2 andh = 0, 0.5, 1.0, and 1.5. The marked points correspond to
f (2) = 0.

Figure 9. Same as in figure 8 but forp = 3, andh = 0, 0.27, 0.5, 1.0, and 1.5.

0, in both cases we findqt = 0 up to a certain value of the energy density(ε = −0.672 for
p = 2 andε = −0.792 forp = 3). Thus, as mentioned before,N (ε) is self-averaging in this
regime. Our results forp = 2 are remarkably similar to those found in the replica calculation
of the quenched average〈lnN (ε)〉, with the typical overlapqt replaced by the saddle-point
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Figure 10. The exponentg in the expression for the average number of pairs of identical
optima 〈M(ε, q)〉 = egN as a function ofq for p = 3, h = 0, and (from top to bottom)
ε = −0.73,−0.75,−0.77,−0.79, and−0.81.

parameter̂q = 〈〈si〉2ε〉 [20]. Here〈. . .〉ε means an average over optima with energy densityε.
In particular,q̂ vanishes forε > −0.672, indicating thus thatN (ε) is self-averaging in this
regime, in agreement with our results. However, while forp = 2, qt increases continuously
from zero, forp = 3 there is a discontinuity atε = −0.792. The same phenomenon is
observed forp > 3, with the size of the jump inqt increasing withp. This finding is
reminiscent of the jump in the order parameter found in the thermodynamic calculations for
p > 2 [12, 13]. This discontinuity inqt can be understood by studying the dependence of
the exponentg on the overlapq for p = 3 andh = 0, shown in figure 10. Since the typical
overlap is associated to the global maximum ofg, the competition between the maximum at
q = 0 and the maximum atq > 0 originates the jump inqt , which takes place at the energy
density where the two maxima have precisely the same height. The situation for non-zero
h is more complicated. The correlations induced by the magnetic field destroy the region
of self-averageness ofN (ε). Interestingly, for a givenh > 0 there is a value of the energy
density for which the typical overlap is minimal. Forp = 3 the effect of the magnetic field
is to decrease the size of the jump inqt until it disappears altogether forh ≈ 0.29. The
results forp > 3 are qualitatively similar to those forp = 3. We mention only that the larger
p is, the larger the value of−ε at which the discontinuity occurs, and the larger the value
of h at which it disappears. Unfortunately, the enormous difficulty of solving the system
of five coupled equations prevents a more systematic analysis of these discontinuities.

5. Conclusion

The analytical investigation of the statistical structure of the energy landscape of thep-
spin Ising model presented in this paper is of interest from the viewpoint of the traditional
statistical mechanics of disordered systems [7, 19–21] as well as from the perspective of
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the study of adaptive walks in rugged fitness landscapes [5, 11, 22]. Besides extending the
calculation of the average number of optima to generalp and non-zero magnetic field, we
have focused on the characterization of the typical overlapqt between pairs of identical
optima. Interestingly, the dependence ofqt on the energy densityε is reminiscent of the
dependence of the thermodynamic order parameter on the temperatureT [12, 13]. We must
note, however, that there is no relation betweenT andε since lnN (ε) is not the entropy of
the spin system. The quite complex effect of the magnetic field on the statistical properties
of the energy optima motivates a more detailed study of the thermodynamics of thep-spin
Ising model for non-zeroh. In fact, even the unambitious analysis of the first moment
〈N (ε)〉 has unveiled an interesting interplay betweenh andp that leads to a discontinuity
in the typical energy density of the optima. Moreover, we have found that the magnetic
field decreases the size of the jump in the typical overlapqt that occurs forp > 2. It would
be interesting to investigate whether a similar effect occurs for the thermodynamic order
parameter as well, which might lead, eventually, to a continuous phase transition. We note
that this effect has already been observed in the sphericalp-spin interaction model [14].

To conclude, we must mention that the calculations presented in this paper are free of
all the mathematical subtleties that permeate the replica analyses of the infinite-range Ising
spin glass [9, 10]. Thus our results present a reliable account, in the sense that we do not
resort to the replica method, of the statistical properties of thep-spin energy landscape.
Although these results may have little relevance to the thermodynamics of the model, they
are of considerable interest to the characterization of the fixed points (metastable states) of
adaptive walks (zero-temperature Monte Carlo dynamics) on that landscape.
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